Multi-analytical non-destructive investigation of pictorial apparatuses of “Villa della Piscina” in Rome


* Dipartimento di Scienze, Università degli studi Roma Tre, Via della Vasca Navale 84, Rome 00161, Italy
† Istituto Nazionale di Scienze e Tecnologie delle Culture, Via Vittorio Emanuele II 9, Roma 00187, Italy
‡ Istituto Nazionale per la Sostenibilità Ambientale (INSA), Via Leonardo da Vinci 10, Rome 00186, Italy
§ Dipartimento di Scienze Ambientali, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
¶ Dipartimento di Scienze, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
‖ Dipartimento di Scienze Ambientali, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
‖‖ Dipartimento di Scienze Ambientali, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
†† Dipartimento di Scienze Ambientali, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy

ARTICLE INFO

Keywords:
Roman wall paintings
Pigments
Material provenance
Multi-analytical approach
Non-invasive analytical techniques

ABSTRACT

Here we present a multi-analytical approach, that makes use of spectroscopic and imaging techniques, aiming at characterising the wall paintings of the “Villa della Piscina”, a Roman archaeological site in Rome. More specifically, we focus the attention on plaster fragments dated in the narrow temporal window bounded between the second half of 1st century and the first half of II century A.D., according to stylistic and archaeological standpoint. This investigation aims at supporting archaeologists in the reconstruction of the decorative motif of the Roman Villa, by studying the composition, the provenance and the style of the decorative phases of the analysed fragments. The presence of conservation and restoration treatments, as protective materials, is also investigated. Our study evidences a rich color palette and a refined use of mixtures of minerals and pigments.

1. Introduction

The archaeometric investigation of Roman wall paintings still represents an attractive research field, since a comprehensive knowledge on the materials and techniques used has not been completely achieved, although several studies have been performed under the archaeological perspective. Since Roman wall paintings have been found in a wide geographic area, the identification of pigments and pictorial composition constitutes an important tool for the identification of communication and trade routes developed over different periods [1–5]. Moreover, Roman wall paintings are often round as incoherent fragments in the archaeological contexts, and virtual reconstruction, which makes use of colour rendering, fragment morphology and modelling is often employed to speculate about the original artwork [6–8]. On the other hand, archaometric investigations can be very helpful for the reconstruction of the decorative walls, due to their capability of accessing the chemical composition of materials.

In the period between 1996 and 1999 the Sovrintendenza Capitolina di Beni Culturali di Roma lead an archaeological investigation involving the suburban district of Centocelle. During those excavations, three large building complexes have been brought to light, one of these being the so called Villa della Piscina. Among the others, this building is of particular interest since it has returned a copious amount of fragments of painted plasters [9].

This villa, whose building events date back from the second half of the 1st century to the 4th century A.D., during the imperial age was characterised by installations denoting a considerable luxury: a couple of examples are a 50 m long fish-nursery pool, located towards the north-east bound of the vast garden, and a piscina cubita, within the thermes located at the south-western quadrant of the complex (cf. [9] p.342 fig.60 for the planimetry). This latter area has been the subject of a complete renovation during the II century A.D., when the piscina cubita was demolished and the service rooms were filled with olivetation deposits connected to the building transformations of the

* Corresponding author.
E-mail address: marco.sbroscia@uniroma3.it (M. Sbroscia).

https://doi.org/10.1016/j.microc.2019.104450
Received 26 August 2019; Received in revised form 18 November 2019; Accepted 18 November 2019
0026-265X/ © 2019 Elsevier B.V. All rights reserved.

Please cite this article as: M. Sbroscia, et al., Microchemical Journal, https://doi.org/10.1016/j.microc.2019.104450